













## Advancing Wildlife Monitoring:

## **Drone-Based Sampling for Roe Deer Density Estimation**

Stephanie Wohlfahrt<sup>1</sup>, Christoph Praschl<sup>2</sup>, Horst Leitner<sup>1</sup>, Wolfram Jantsch<sup>1</sup>, Julia Konic<sup>3</sup>, Silvio Schueler<sup>3</sup> and David C. Schedl<sup>2</sup>,

<sup>1</sup>Office for Wildlife Ecology and Forestry, Klagenfurt, Austria

<sup>2</sup>Digital Media Lab, University of Applied Sciences Upper Austria, Hagenberg, Austria

<sup>3</sup>Austrian Research Centre for Forests BFW, Vienna, Austria



Although both methods aim to estimate density, they offer fundamentally different perspectives on wildlife activity.



## Methods & Study Area

Study area

Drone flights

Camera traps

Naiive extrapolation

Bootstrapping transect densities

bootstrapping transcot densities

Modelling

20. Okt 2 single days 19. Nov

24 h observation 24

20. Okt 1 month 19. Nov

daytime flight

3 areas: A, B and C Size: 2.98 - 5.49 km<sup>2</sup> Elevation: 267 - 476 m a.s.l.

Transect length: 350 m Flight altitude: 60 m AGL

Units: 21 (A), 22 (B and C)

350 m grid

761

Sightings/total flown area (km²) \*100

Sightings/km<sup>2</sup> per transect

1.000 iterations

Count data models
Controlling for transect size

Zero inflated negative binomial (ZINB)

## Results

In a total of 227 transects, between 11.9 and 25.5% of the area was covered per flight day and area. The number of roe deer sightings ranged from 21 to 37. Camera trap (CT) densities ranged from 13.4 to 32.0 deer/km $^2$ . Drone estimates per flight day ranged from 27.0 to 64.3 deer/km $^2$ . An analysis of variance shows weakly significant differences between the methods used (F = 3.57, p = 0.038). A post hoc Tukey test shows no differences between the three drone estimates in detail, but weakly significant differences between the bootstrapping and ZINB methods with CT density (p = 0.038 and p = 0.026, respectively).

|          |               |                 |                    | 8                |           |                              |                     |
|----------|---------------|-----------------|--------------------|------------------|-----------|------------------------------|---------------------|
|          | Size<br>(km²) | Flight<br>month | Covered area (km²) | Covered area (%) | Sightings | Transects with sightings (%) | Number of transects |
| Survey A | 2.98          | Oct             | 0.76               | 25.5             | 21        | 22.5                         | 40                  |
|          |               | Nov             | 0.51               | 17.1             | 25        | 28.6                         | 28                  |
| Survey B | 5.49          | Oct             | 0.94               | 17.1             | 37        | 27.7                         | 47                  |
|          |               | Nov             | 0.74               | 13.5             | 25        | 22.2                         | 36                  |
| Survey C | 5.36          | Oct             | 0.93               | 17.4             | 35        | 37.8                         | 45                  |
|          |               | Nov             | 0.64               | 11.9             | 23        | 34.3                         | 31                  |



Extrapolation of count data showed significant similar density results for three methods with increasing complexity

- Naïve area-based extrapolation
- Bootstrapping transect densities

Download detailed information

about the poster content

 Modelling using a zero-inflated negative binomial distribution (ZINB)

and significant differences to CT-derived REM densities.



Get project information

